Code refactoring is "disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior",[1] undertaken in order to improve some of the nonfunctional attributes of the software. Typically, this is done by applying series of "refactorings", each of which is a (usually) tiny change in a computer program's source code that does not modify its functional requirements. Advantages include improved code readability and reduced complexity to improve the maintainability of the source code, as well as a more expressive internal architecture or object model to improve extensibility.
“ | By continuously improving the design of code, we make it easier and easier to work with. This is in sharp contrast to what typically happens: little refactoring and a great deal of attention paid to expediently adding new features. If you get into the hygienic habit of refactoring continuously, you'll find that it is easier to extend and maintain code. | ” |
—- Joshua Kerievsky, Refactoring to Patterns [2] |
Contents |
Refactoring is usually motivated by noticing a code smell.[3] For example the method at hand may be very long, or it may be a near duplicate of another nearby method. Once recognized, such problems can be addressed by refactoring the source code, or transforming it into a new form that behaves the same as before but that no longer "smells". For a long routine, extract one or more smaller subroutines. Or for duplicate routines, remove the duplication and utilize one shared function in their place. Failure to perform refactoring can result in accumulating technical debt.
There are two general categories of benefits to the activity of refactoring.
Before refactoring a section of code, a solid set of automatic unit tests is needed. The tests should demonstrate in a few seconds that the behavior of the module is correct. The process is then an iterative cycle of making a small program transformation, testing it to ensure correctness, and making another small transformation. If at any point a test fails, you undo your last small change and try again, possibly in a different way. Through many small steps the program moves from where it was to where you want it to be. Proponents of extreme programming and other agile methodologies describe this activity as an integral part of the software development cycle.
Here are some examples of code refactorings; some of these may only apply to certain languages or language types. A longer list can be found in Fowler's Refactoring book[3] and on Fowler's Refactoring Website.[5]
While the term refactoring originally referred exclusively to refactoring of software code, in recent years code written in hardware description languages (HDLs) has also been refactored. The term hardware refactoring is used as a shorthand term for refactoring of code in hardware description languages. Since HDLs are not considered to be programming languages by most hardware engineers,[8] hardware refactoring is to be considered a separate field from traditional code refactoring.
Automated refactoring of analog hardware descriptions (in VHDL-AMS) has been proposed by Zeng and Huss.[9] In their approach, refactoring preserves the simulated behavior of a hardware design. The non-functional measurement that improves is that refactored code can be processed by standard synthesis tools, while the original code cannot. Refactoring of digital HDLs, albeit manual refactoring, has also been investigated by Synopsys fellow Mike Keating.[10][11] His target is to make complex systems easier to understand, which increases the designers' productivity.
In the summer of 2008, there was an intense discussion about refactoring of VHDL code on the news://comp.lang.vhdl newsgroup.[12] The discussion revolved around a specific manual refactoring performed by one engineer, and the question to whether or not automated tools for such refactoring exist.
As of late 2009, Sigasi is offering automated tool support for VHDL refactoring.[13]
AMIQ DVT, an IDE for hardware design and verification, provides refactoring capabilities for e (verification language), SystemVerilog, Verilog and VHDL.[14]
In the past refactoring was avoided in development processes. One example of this is that CVS (created in 1984) does not version the moving or renaming of files and directories.
Although refactoring code has been done informally for years, William Griswold's 1991 Ph.D. dissertation[15] is one of the first major academic works on refactoring functional and procedural programs, followed by William Opdyke's 1992 dissertation[16] on the refactoring of object-oriented programs,[17] although all the theory and machinery have long been available as program transformation systems. All of these resources provide a catalog of common methods for refactoring; a refactoring method has a description of how to apply the method and indicators for when you should (or should not) apply the method.
Martin Fowler's book Refactoring: Improving the Design of Existing Code[3] is the canonical reference.
The first known use of the term "refactoring" in the published literature was in a September, 1990 article by William F. Opdyke and Ralph E. Johnson.[18] Griswold's Ph.D. thesis,[15] Opdyke's Ph.D. thesis,[16] published in 1992, also used this term.[17]
The term "factoring" has been used in the Forth community since at least the early 1980s. Chapter Six of Leo Brodie's book Thinking Forth (1984) is dedicated to the subject.
In extreme programming, the Extract Method refactoring technique has essentially the same meaning as factoring in Forth; to break down a "word" (or function) into smaller, more easily maintained functions.
Refactorings can also be reconstructed[19] posthoc to produce concise descriptions of complex software changes recorded in software repositories like CVS or SVN.
Many software editors and IDEs have automated refactoring support. Here is a list of a few of these editors, or so-called refactoring browsers.